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termediate, coordinatively unsaturated, cyclopropenyl carbonyl 
metal species of general structure 3, which then undergoes ring 
expansion.3d'4 We here present direct evidence for such a 
mechanism and describe unusual spectroscopic and chemical 
properties of the cyclobutenonyl ligand. 

Reaction of equimolar amounts of the 2-cyclopropene-l-
carbonyl chloride 4a5 and Fe (^-C5H5)(CO)2

-Na+ 6 in tet-
rahydrofuran (THF) afforded, after dry column chromatog­
raphy, the coordinatively saturated 2-cyclopropenyl-l-car-
bonyl-iron complex 5, in which the cyclopropene ring remains 
intact.7 Complex 5 can be recovered unchanged from refluxing 
hexane; ultraviolet irradiation of 5 in hexane led to decompo­
sition, affording [Fe(775-C5H5)(CO)2]2 as the only metal-
containing product. No ring expansion to form a product 
analogous to 2d3d was observed. 

In contrast, reaction of 4a with Co(CO)3L-Na+ (L = CO, 
PPh3, PPh2Me, PMe2Ph, PEt3) in THF afforded the cyclo­
butenonyl complexes 6a-e in excellent yields.8 Complexes 6b-e 
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Interactions of Small Organic Rings with 
Transition Metals. Formation of ?;3-Cyclobutenonyl 
Complexes by the Ring Expansion of 
2-Cyclopropene-l-carbonyl Metal Species 

Sir: 

Reactions of cyclopropenium cations with transition metal 
complexes have been only moderately successful in the prep­
aration of ?)3-cyclopropenyl metal complexes.1 Typical alter­
native reaction pathways have been shown to afford complexes 
derived from direct insertion of the metal into the three-
membered ring,2 or, in a more unusual reaction, the formation 
of four-membered-ring cyclobutenonyl complexes by a ring 
expansion with incorporation of carbon monoxide.3 Thus, 
cations la-c have been shown to afford the complexes 2a-d on 
reaction with the appropriate metal carbonyl anion.3 It has 
been suggested that the mechanism of this ring-expansion 
reaction involves attack on coordinated CO to afford an in-
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could also be prepared in essentially quantitative yield by re­
action of 6a with equimolar amounts of the appropriate tertiary 
phosphine (CgH6, 25 0C). Infrared monitoring of the reaction 
of Co(CO)3(PEt3)~Na+ with 4a exhibited transient absorb-
ances at 2075 (m), 2041 (s), 2017 (s), and 1651 (m) cm"1, 
characteristic9 of an acyl species 7. These bands were rapidly 
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replaced by the absorbances at 2023 (s), 1977 (s), and 1691 
(m) cm -1, of the final product 6e. We have been unable to 
isolate the intermediate 7 in pure form. 

Adjustment of the steric and electronic demands of the ring 
substituents resulted in little selectivity regarding the site of 
carbon-carbon bond cleavage in the three-membered ring. 
Acid chloride 4b10 afforded a 1.0:1.0 mixture" of 8a and 8b 
on reaction with Co(CO)4

-, whereas the aryl-alkyl-disubsti-
tuted acid chloride 4c12 yielded a 1.0:1.4 mixture of 8c and 
8d.13 

These observations can only be reconciled in terms of the 
originally proposed mechanism for the formation of the cy-
clobutenonyl-cobalt system;3d the acyl species of general 
structure 3 is indeed the first-formed complex intermediate 
which rearranges to the cyclobutenonyl ligand. In contrast to 
the observed inertness of the iron complex 5 toward thermal 
loss of a terminal CO ligand, such CO dissociation from a co­
balt complex such as 7 is expected, and is observed, to be rel­
atively facile.6 The stability of 5 and the lability of 7 toward 
ligand dissociation clearly define the generation of a vacant 
coordination site on the metal as a prerequisite for ring ex­
pansion; interaction of the metal with the ring must therefore 
be a key step. Two such modes of interaction are possible, with 
the a framework of the ring or with the olefinic function. The 
latter seems probable in view of the observed thermal stabilities 
of saturated cyclopropylcarbonyl-metal complexes.14 The 
preference for cleavage of the cyclopropene ring adjacent to 
the methyl group in the ring expansion reaction of 4c pre­
sumably reflects a steric effect; electronic effects involving 
charge buildup on either olefinic carbon atom should have 
manifested themselves in the reaction of 4b,15 in which no 
preference was observed. 

It is noteworthy that this synthetic route provides a much 
higher yield route into the ?;3-cyclobutenonyl-cobalt system 
than those previously described.3ab-d The ring-expansion re­
action appears to be unique to transition metal substituted 
cyclopropene systems; ring expansion reactions of other 2-
cyclopropenyl-1-carbonyl moieties which involve initial 
nucleophilic attack at the carbonyl function afford five-
membered-ring furan skeletons.16 The precise nature of the 
ring-expansion reaction is still unclear, although a metal-
promoted 1,2-migration reaUion appears attractive.4 

The infrared spectra of the cyclobutenonyl complexes 6 are 
of particular interest; the stretching frequency of the ring ke­
tone (cc=o) is markedly dependent upon the nature of L in the 
Co(CO)2L fragment (Table I). An increase in the donor ability 
of L is accompanied by a pronounced shift to low frequency 
of ^c=O • 

The bonding in the cyclobutenonyl-metal system may be 
described in terms of two canonical forms, one which we have 
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already depicted as the r;3 form 6, and the zwitterionic 9 
comprising an tj4-coordinated anion of the unknown hy-
droxycyclobutadiene. Increased contribution from 9 as the 
donor ability of L is increased is expected, and explains the 
observed trend in i>c=o- The chemistry of these cyclobutenonyl 
complexes also reflects this feature. 

Complex 6a exists in benzene solution in equilibrium with 
the novel complex 10. At ambient temperature this equilibri­
um, as evidenced by infrared spectroscopy, lies essentially 
quantitatively on the side of 6a. In refluxing benzene, however, 
the infrared spectrum of the solution exhibits almost quanti­
tative conversion to 10 (KCO 2041 (s), 1998 (s), 1626 (m) 
cm-1)- Cooling to ambient temperatures quickly reestablishes 
the spectrum of 6a. Analogous reflux of 6a in hexane solution 
results in precipitation of the less soluble 10 as a brown, 
amorphous solid. Dissolution of 10 in benzene or dichloro-
methane at room temperature rapidly regenerates 6a. For­
mation of 10 can be viewed as resulting from nucleophilic at­
tack of the negatively charged ligand oxygen in 9 on carbon 
monoxide complexed to a cationic metal center. Such reactions 
are well documented. The nucleophilicity of the ligand oxygen 
atom in complexes 6 has also been used to generate a range of 
neutral and cationic ?/4-cyclobutadiene complexes of co-
balt(I).17 Further studies of the chemistry of the cyclobuten­
onyl and related ligand systems are in progress. 
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Reaction of Nitrosylpentaammineruthenium(II) Ion 
with Organic Carbonyls Containing an 
a-Methylene Group: Facile Oxidative Cleavage 
of a Carbon-Carbon Bond 

Sir: 

We report the facile oxidative cleavage of ketones (and al­
dehydes) by the action of nitrosylpentaammineruthenium(II) 
ion in dilute aqueous base. The stoichiometrics shown in eq 1 
and 2 have been established for open chain compounds (1) and 
for cyclic ketones (2). 

£ 
R'-C-CH2R + [(H3N)5Ru11INO+)I 

3+ 
+ 2 OH" 

[ ( H 3 N ) 5 R u 1 1 N i C R ] 2+ + R'-C 

where R = alkyl or phenyl and R' = H, alkyl, or phenyl 

0" + 2 H2O (1) 

0 
II 

(\ + [LH3N)5Ru11IMO+)] 

( C H 2 ) n 

3+ 
+ 2 OH 

0 

- » [ T H 3 N ) 5 R U 1 1 N E C ( C H 2 ) ^ 1 C - O J 1 + + 2 H2O (2) 

where n = 4 , 5 or 6. 

The only ruthenium-containing products are nitrilepen-
taammineruthenium(ll) species, which are isolated as per-
chlorate salts and identified by comparing infrared and elec­
tronic spectra with those in the literature.1'2 Table 1 lists some 
typical carbonyl compounds which have been used, the nitrile 
products, and their yields. In those cases in which the organic 
compound dissolves completely in 0.1 M NaOH, the reaction 
appears to be complete within 10 min at room temperature. 
The benzoate ion has been identified as a major reaction 
product in the reaction with C6H5CH2C(O)C6H5 as substrate 
by conversion to benzoic acid and identification via infrared, 
NMR, and melting point. The products from the reactions with 
cyclic ketones exhibit, as expected, infrared peaks distinctive 
for both nitrile and carboxylic acid functions. 

A reaction also occurs with compounds containing a-methyl 
but no other a-hydrogen atoms (e.g., acetone and acetalde-
hyde). These reactions produce intractable products as would 
be expected from the known chemical behavior of the cyano-
pentaammineruthenium(II) ion.3 Reaction 3 thus provides on 
alternative to the haloform reaction. 

When both methyl and methylene groups are present (e.g., 
2-butanone) the reaction occurs predominantly at the meth-

Table I. Typical Results with Compounds Containing a-Methylene 
Groups 

carbonyl 

nitrile product 
(H,N)5RuN= % 

CR2+, R yield0 

CH3CH2CHO, propanal 
CH3CH2C(O)CH2CH2, 2-pentanone 
CH3CH2C(O)CH3, 2-butanone 
C6HsCH2CHO,* phenylacetaldehyde 
C6H5CH2C(O)C6H5,* benzyl phenyl 

ketone 
C H 2 = C H C H 2 C H 2 C ( O ) C H 3 , * 

5-hexen-2-one 
CH2(CH2)5C=0,* cycloheptanone 

CH3 
CH3 
CH3 
C6H5 

C6H5 

CH3CH=CH'' 

HOOC-
(CH2J4CH2" 

67 
55 
79 
49 
44 

23 

87 

" Based on weight of recrystallized perchlorate salts. * Limited 
solubility in 0.1 M NaOH. c Note that the double bond undergoes 
base-catalyzed isomerization into a conjugated position. d Acidified 
before perchlorate addition. 

CH3CCH3 + [ (H3N)5Ru1 1 (N=O]] 3 + + 3 OH* 

» (("3N)5R"1"(N=C)]- 1 + + CH3COO- + 3 H2O (3) 

polymer 

ylene carbon. Decreasing the pH to 7 stops the reaction as does 
increasing O H - to 2 M (which is known to convert the nitrosyl 
ligand to nitrite4). 

Most of the previously reported reactions of the Ru11NO3+ 

moiety have involved nitrogen containing species such as hy­
drazine,5 hydroxylamine,5 azide,6 aromatic7 and aliphatic8 

amines, and coordinated amido ligands**-9 to form new nitro­
gen-nitrogen bonds, although formation of N-coordinated 
nitroso1 °-'' and oxime'2-'3 complexes have also recently been 
noted.14 This report represents the first case in which a car­
bon-nitrogen triple bond is formed and in which a carbon-
carbon bond is cleaved by the reaction of Ru11NO3+ or any 
other metal nitrosyl species. 

The mechanism in Scheme I is postulated.15 

The driving forces for the above reaction are the formation 
of a C O 2

- chromophore, the high electrophilicity of the N O + 

ligand,16 and the well-established stabilization of Ru(II) 
complexes by x-acceptor ligands such as nitriles via dx-px* 
back-bonding.17 
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